FRACTIONS

Pearson Edexcel - Tuesday 19 May 2020 - Paper 1 (Non-Calculator) Higher Tier

1.

2	Shown	M1	for conversion to improper fractions eg. $\frac{7}{3}$ or $\frac{15}{4}$	Need not be shown with operators
		M1	(dep) for method to multiply fractions,	
		-	eg. $\frac{7 \times 15}{3 \times 4} \left(=\frac{105}{12}\right)$ or $\frac{28 \times 45}{12 \times 12} \left(=\frac{1260}{144}\right)$ oe	
		C1	for complete working showing each stage as far as $\frac{35}{4}$ or $8\frac{9}{12}$	

Pearson Edexcel - Tuesday 19 May 2020 - Paper 1 (Non-Calculator) Higher Tier

2.

9	$5\frac{3}{5}$	M1	for writing as improper fractions with at least one correct, eg $\frac{7}{2} \times \frac{8}{5}$ oe	
		M1	(dep) for multiplying improper fractions, eg $\frac{"56"}{"10"}$ or $5\frac{6}{10}$ or $\frac{28}{5}$ oe	
		Al	cao	

Pearson Edexcel - Thursday 8 November 2018 - Paper 2 (Calculator) Higher Tier

3.

12	(a)	$\frac{4x-6}{3x-9}$	M1	factorises numerator of $4x^2 - 9$ eg $(2x - 3)(2x + 3)$ oe	$\frac{2x(2x-3)(2x+3)}{3x(2x+3)(x-3)}$
			M1	factorises denominator eg $x(x-3)$ or $3(2x+3)$ or for $3x(2x^2-3x-9)$	
			Al	cancels to give $\frac{4x-6}{3x-9}$	Accept $a = 4$, $b = -6$, $c = 3$, $d = -9$
	(b)	$\frac{-x+8}{x(x+1)(x-2)}$	M1	method to use a common denominator eg $x(x+1)(x-2)$ by multiplying terms	Method must involve finding equivalents for all three separate terms; may be done in several stages.
			M1	deduce numerator eg $3x(x-2) + x(x+1) - 4(x+1)(x-2)$	
			A1	oe	Equivalents must be algebraically equivalent and must have involved full simplification.

Pearson Edexcel - Thursday 4 June 2015 - Paper 1 (Non-Calculator) Higher Tier

23			14/3	5	M1 for correct substitution into a volume formula for a cylinder or a cone, eg. $\frac{1}{3} \times \pi \times 3^2 \times 4 \ (= 12\pi)$ or $\pi \times 3^2 \times (6-4) \ (= 18\pi)$ or $\pi \times 3^2 \times h \ (= 9\pi h)$ or $\pi \times 3^2 \times (h-2)$ M1 for method to find volume after 5 hours, eg. " 12π " + " 18π " (= 30π) M1 (dep on M1) for use of a correct ratio, eg. " 30π " $\times \frac{9}{5} \ (= 54\pi)$ or " 30π " $\times \frac{4}{5} \ (= 24\pi)$ M1 for deriving an equation in h , eg. " 54π " = " $9\pi h$ " + " 12π " A1 for $\frac{14}{3}$ or equivalent fraction
----	--	--	------	---	--

Pearson Edexcel - Monday 6 June 2011 - Paper 3 (Non-Calculator) Higher Tier

5.

16	(a)	$\frac{2}{3} \times \frac{6}{5}$		4/5	3	M1 for $\frac{2 \times 6}{3 \times 5}$ M1 for $\frac{2 \times 6}{3 \times 5}$ or 12/15 oe A1 cao
	(b)	$(2-1) + \frac{5}{15} - \frac{6}{15}$ or $\frac{35}{15} - \frac{21}{15}$ Or $\begin{array}{ c c c c c c c c c c c c c c c c c c c$	7 3 7 21 5 35 15	14 15	3	M1 for attempt to find a common denominator or sight of $\frac{5}{15}$ or $\frac{6}{15}$ or $\frac{35}{15}$ or $\frac{21}{15}$ oe or fully correct table A1 for sight of $\frac{5}{15} - \frac{6}{15}$ or $\frac{35}{15} - \frac{21}{15}$ oe A1 for $\frac{14}{15}$ oe Alternative M1 for $0.33(3)$ or 0.4 OR $2.33(3)$ or 1.4 A1 for $0.33(3) - 0.4$ OR $2.33(3) - 1.4$ A1 for 0.93 (recurring)

Pearson Edexcel - Friday 10 June 2011 - Paper 4 (Calculator) Higher Tier

6.

7	12	$\times 120 = 90$ 20 - 90 = 30 left $0 \div 3$	10	3	M1 for $\frac{3}{4} \times 120$ oe or 90 or $\frac{1}{4} \times 120$ oe or 30 M1(dep) for '30' - (2 × '30' ÷ 3) oe or $\frac{1}{3} \times$ '30' oe A1 cao
					Al cao

Pearson Edexcel - Tuesday 9 November 2010 - Paper 3 (Non-Calculator) Higher Tier

18 (a)	$2\frac{17}{20} - 1\frac{8}{20}$	1 ⁹ / ₂₀	3	M1 for dealing with the whole numbers M1 for finding a correct common denominator A1 for $1\frac{9}{20}$ or $\frac{29}{20}$ oe or B1 for $\frac{57}{20}$ or $\frac{7}{5}$ oe M1 for finding a correct common denominator A1 for $1\frac{9}{20}$ or $\frac{29}{20}$ oe or M1 for 2.85 M1 for 1.4 A1 for 1.45 oe
(b)	$\frac{8}{3} \times \frac{7}{4} = \frac{8 \times 7}{3 \times 4} = \frac{56}{12}$	$4\frac{2}{3}$	3	B1 for $\frac{8}{3}$ oe or $\frac{7}{4}$ oe M1 for multiplying numerator and denominator of " $\frac{8}{3}$ " and " $\frac{7}{4}$ " A1 for $4\frac{2}{3}$ oe mixed number or $\frac{14}{3}$ oe OR B1 for 2.67 or 2.66() and 1.75 M1 (dep B1) for correct method of multiplication A1 for $4\frac{2}{3}$ oe

Pearson Edexcel - Monday 7 June 2010 - Paper 3 (Non-Calculator) Higher Tier

8.

11	$300 \div 6 = 50$	160	4	M1 for 300÷6 or 50 seen
1258	$300 \div 10 \times 3 = 90$	100000	15	M1 for 300 ÷ 10 × 3 oe or $30+30+30$ or 90 seen
	300-90-50			M1 (dep on at least 1 previous M1) for
	300-90-30			300-"50"-"90"
				A1 cao
				AT Cao
	or			or
	26 1 00 30			M1 for $\frac{1}{6} + \frac{3}{10}$ or $\frac{7}{15}$ oe
	1 3 7			M1 for $-+\frac{1}{6}$ or $-\frac{1}{10}$ oe
	$\frac{1}{6} + \frac{3}{10} = \frac{7}{15}$			0 10 13
	7			7
	$\frac{7}{15} \times 300 = 140$			M1 for " $\frac{7}{15}$ " × 300 or 140 seen or 1- " $\frac{7}{15}$ " or
	5-357			8
	300 – 140			$\frac{8}{15}$ oe seen
				M1 (dep on at least 1 previous M1) for 300-"140"
				or 160 seen or " $\frac{8}{15}$ "× 300
				CONTRACTOR
				A1 cao

Pearson Edexcel - Monday 7 June 2010 - Paper 3 (Non-Calculator) Higher Tier

9.

16	13 8	26	3	M1 for attempt to convert to improper fractions eg.
10	$\frac{13}{8}$	<u>26</u>	3	
	4 ^ 3	3		$\frac{3\times4+1}{2}$ oe or $\frac{2\times3+2}{2}$ oe seen
				4
				114 (dan) for "13"×"8"
				M1 (dep) for $\frac{"13"x"8"}{4 \times 3}$ or $\frac{104}{12}$ oe seen
				A1 for $\frac{26}{3}$ or $8\frac{2}{3}$
				AT 101 $\frac{1}{3}$ or $8\frac{1}{3}$
				OR
				M1 for 3.25 × 2.66 or better
				M1 for a fully correct multiplication method
				A1 for 8.66 (recurring)
				A Tor o.oo (recurring)

Pearson Edexcel - Thursday 5 November 2009 - Paper 3 (Non-Calculator) Higher Tier

7	(a)	$\frac{3}{8} + \frac{1}{4} = \frac{3}{8} + \frac{2}{8} =$	$\frac{5}{8}$	2	M1 Use of common denominator: $\frac{1}{4}$ as $\frac{2\times 1}{2\times 4}$ or writing both fractions with a common denominator other than
		Or			8 with at least one of the fractions correct. OR $0.375 + 0.25$ A1 $\frac{5}{8}$ Accept 0.625 only
		8 + 12 = 20			Or M1 for sight of the addition table and $8 + 12 (= 20)$ A1 $\frac{5}{8}$
	(b)	$\frac{2}{3} \times \frac{4}{5} = \frac{2 \times 4}{3 \times 5} = \frac{8}{15}$	8 15	2	M1 for multiplying numerator and denominator of $\frac{2}{3}$ and $\frac{4}{5}$ OR $0.66()\times0.8$ OR 0.67×0.8 oe A1 for $\frac{8}{15}$ oe OR for 0.533

7 (c)	423 12 ×12 ×423 4230 4800 846 240 5076 36 5076	5076	3	M1 for a complete method with relative place value correct. Condone 1 multiplication error, addition not necessary. M1 (dep) for addition of all the appropriate elements of the calculation A1 cao
	4 2 3 0 0 0 0 1 0 8 0 0 2 400 20 3 4000 200 30 800 40 6 2 4000+200+30+800+40+6=5076			M1 for a complete grid with not more than 1 multiplication error, addition not necessary. M1 (dep) for addition of all the appropriate elements of the calculation A1 cao M1 for sight of a complete partitioning method, condone 1 multiplication error, addition not necessary. M1 (dep) for addition of the all the appropriate elements of the calculation A1 cao M2 for repeated addition, exactly 12 A1 cao

OCR GSCE – Thursday 5 November 2020 – Paper 5 (Non-Calculator) Higher Tier

5	5.6[0] with correct working	6	M2 for $\left(\frac{1}{3} + \frac{2}{5}\right) \times 10$ oe	"Correct working" requires full evidence of M1A1 AND M1 or convincing pictoral/alternate convincing approach For method accept equivalent decimals or percentages (to 2 sf)
			or M1 for $\frac{1}{3} \times 10$ or $\frac{2}{5} \times 10$	The method may be shown pictorally
			A1 for $\frac{110}{15}$ oe or	For A1 eg 71/3 , accept 4 + 31/3 oe , 733[]% A1 implies M2
			M1 for $\frac{1}{3} + \frac{2}{5}$ oe A1 for $\frac{11}{15}$ oe	The method may be shown pictorally Implies M1
			M1dep for their improper fraction/decimal/mixed number rounded up to next integer M1 for their integer multiplied by 70 or 0.7 If 0 scored, SC1 for answer 5.6[0] or 5.6	Dep on their improper fraction ≠ integer Must show a more accurate value first, could be in two parts eg 4 + 3½ then 8 This may be earned by those with wrong working then doing eg 8 x 0.7. Must see a calculation implying an integer × 70 or 0.7, could be in several parts

OCR GSCE – Monday 9 November 2020 – Paper 6 (Calculator) Higher Tier

12.

eg. M1 + M1 for $\frac{x(x-2)(x+2)(x-2)}{(x+2)(x-2)(x+2)(x-2)}$			$\frac{2x-1}{x+2}$ as final answer		AND M3 for all 3 fractions combined with quadratic common denominator and expanded numerator or M2 for correct products on numerator of at least 2 equivalent fractions that are consistent with their common denominators or M1 for correct product on numerator of 1 fraction that is consistent with an attempted common denominator AND M1dep for $\frac{(2x-1)(x-2)}{(x+2)(x-2)}$ or $\frac{(2x-1)(x-2)}{x^2-4}$ (dep on previous M3 earned)	e.g. $\frac{6x}{(x+2)(x-2)}$ seen, or a common denominator of $(x+2)(x-2)$ later expanded to x^2-4 e.g. $\frac{x^2-2x+x^2+x+2x+2-6x}{(x+2)(x-2)}$ soi by $\frac{2x^2-5x+2}{(x+2)(x-2)}$ e.g. $\frac{x(x-2)}{(x+2)(x-2)}$ oe and $\frac{(x+1)(x+2)}{(x+2)(x-2)}$ oe e.g. $\frac{x(x-2)}{(x+2)(x-2)}$ oe Factorises numerator of combined fraction Can earn up to $\mathbf{M1} + \mathbf{M2} + \mathbf{M0}$ for common denominator used that is not in its lowest terms. eg. $\mathbf{M0} + \mathbf{M2}$ for $\frac{x(x-2)(x^2-4)}{(x+2)(x-2)(x^2-4)}$ and $\frac{(x+1)(x+2)(x^2-4)}{(x+2)(x-2)(x^2-4)}$ eg. $\mathbf{M1} + \mathbf{M1}$ for $\frac{x(x-2)(x+2)(x-2)}{(x+2)(x-2)(x+2)(x-2)}$
--	--	--	------------------------------------	--	---	---

OCR GSCE – Thursday 6 June 2019 – Paper 5 (Non-Calculator) Higher Tier

8	10	5	B4 for $\frac{120}{11}$ oe or for $\frac{110}{30}$ oe and $\frac{121}{30}$ oe or B3 for $\frac{110}{30}$ oe or $\frac{121}{30}$ oe	For B4 accept 10.9 or 3.66 to 3.67 and 4.03 For B3 accept 3.66 to 3.67 or 4.03
			OR B2 for $\frac{11}{30}$ oe or M1 for $\frac{1}{6} + \frac{1}{5}$ or for $\frac{5}{30}$ and $\frac{6}{30}$ seen M1 for $4 + their\left(\frac{1}{6} + \frac{1}{5}\right)$ oe	0.366 to 0.367 or 36.6% to 36.7% For M1 intention to add the fractions eg use of 0.16 to 0.17 + 0.2 oe percentages e.g. 4 + (0.16 to 0.17 + 0.2) oe NB can score B2 M1 or M1M1